

Alex Pomarol, UAB (Barcelona)

based in work with

- J. Elias-Miro, J.R. Espinosa and E. Masso
 - M. Montull and F. Riva

Plenty of new data from the LHC: Implications?

- Most of us like to look for implications in specific scenarios, motivated by naturalness, ...
 Top-down approach: MSSM, composite Higgs,...
- But not having found anything, it makes sense to be more open to alternatives

(For example, even in susy scenarios, plenty of possibilities beyond the MSSM (e.g. Higgs as a partner of a SM lepton))

Approach to look for deviations from the SM more model-independent:
 SM + higher-dimensional operators

Assuming new-physics scale Λ is heavier than M_w , we can perform an expansion in derivatives and SM fields (assuming lepton & baryon number)

 \mathcal{L}_6 : made of local dim-6 operators

- How many? What is the best basis of operators?
- What are the implications (on Higgs)?

Classification of dim-6 operators

Search for the set of independent operators forming a basis:

Long story: Buchmuller&Wyler 86 ... Grzadkowski et al. 10 from 80 operators ... to 59 operators (for one family)

Reduction of the set by using field redefinitions:

(equivalently, using EOM)

e.g. $H \to H \left(1 + \alpha_1 g_H^2 |H|^2 / \Lambda^2\right)$ $B_\mu \to B_\mu + ig' \alpha_B (H^\dagger \overset{\leftrightarrow}{D^\mu} H) / \Lambda^2$ $B_\mu \to B_\mu + \alpha_{2B} (\partial^\nu B_{\nu\mu}) / \Lambda^2$

59 dimension-six operators (for one family)

	X^3		φ^6 and $\varphi^4 D^2$	$\psi^2 arphi^3$		
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi\Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$	
Q_W	$\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$	
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$					
	$X^2 \varphi^2$		$\psi^2 X \varphi$	$\psi^2 \varphi^2 D$		
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$	
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\overline{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	
$Q_{\varphi W}$	$\varphi^{\dagger}\varphiW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$	
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$	
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu u}B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu u}B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$	
$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphiW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$	
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$	

Grzadkowski et al. 10

$(\bar{L}L)(\bar{L}L)$			$(\bar{R}R)(\bar{R}R)$			$(\bar{L}L)(\bar{R}R)$	$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		
	Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$	Q_{ledq}	$(ar{l}_p^j e_r) (ar{d}_s q_t^j)$	
	$Q_{qq}^{(1)}$	$(ar{q}_p\gamma_\mu q_r)(ar{q}_s\gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$	$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	
	$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(ar{l}_p\gamma_\mu l_r)(ar{d}_s\gamma^\mu d_t)$	$Q_{quqd}^{(8)}$	$\left(\bar{q}_p^j T^A u_r)\varepsilon_{jk}(\bar{q}_s^k T^A d_t)\right)$	
	$Q_{lq}^{(1)}$	$(ar{l}_p \gamma_\mu l_r) (ar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r) (\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$	$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	
	$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$	$Q_{lequ}^{(3)}$	$\left((\bar{l}_{p}^{j}\sigma_{\mu\nu}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}\sigma^{\mu\nu}u_{t}) \right)$	
			$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$	<u>u</u>	1	
			$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{ad}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$			
					$Q_{ad}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$			

Choosing the basis for dim-6 operators

Physics is basis-independent, as long as you keep all operators. But in practice this is difficult, so people truncate the set, giving strong dependence on the choice of the basis

> we will see examples in the literature of how the use of the non-appropriate basis can mislead people

Some criteria for a convenient basis:

- Clean operator + experiment connection
- Capture in few operators the impact of different BSM: Universal theories, weakly-coupled theories (MSSM), ...
- Keep separated operators of possible different origins and coefficients of different expected size
- Keep symmetries of the BSM manifest

Giudice, Grojean, AP, Rattazzi 07

$$\begin{split} \mathcal{L}_{\text{SILH}} &= \frac{c_H}{2f^2} \partial^{\mu} \left(H^{\dagger} H \right) \partial_{\mu} \left(H^{\dagger} H \right) + \frac{c_T}{2f^2} \left(H^{\dagger} \overleftarrow{D^{\mu}} H \right) \left(H^{\dagger} \overleftarrow{D}_{\mu} H \right) \\ &- \frac{c_6 \lambda}{f^2} \left(H^{\dagger} H \right)^3 + \left(\frac{c_y y_f}{f^2} H^{\dagger} H \bar{f}_L H f_R + \text{h.c.} \right) \\ &+ \frac{i c_W g}{2m_{\rho}^2} \left(H^{\dagger} \sigma^i \overleftarrow{D^{\mu}} H \right) (D^{\nu} W_{\mu\nu})^i + \frac{i c_B g'}{2m_{\rho}^2} \left(H^{\dagger} \overleftarrow{D^{\mu}} H \right) (\partial^{\nu} B_{\mu\nu}) \\ &+ \frac{i c_H W g}{16\pi^2 f^2} (D^{\mu} H)^{\dagger} \sigma^i (D^{\nu} H) W_{\mu\nu}^i + \frac{i c_H B g'}{16\pi^2 f^2} (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu} \\ &+ \frac{c_{\gamma} g'^2}{16\pi^2 f^2} \frac{g^2}{g_{\rho}^2} H^{\dagger} H B_{\mu\nu} B^{\mu\nu} + \frac{c_g g_S^2}{16\pi^2 f^2} \frac{y_t^2}{g_{\rho}^2} H^{\dagger} H G_{\mu\nu}^a G^{a\mu\nu}. \end{split}$$

$$\boldsymbol{\Lambda} = \mathbf{m}_{\boldsymbol{\rho}} = \mathbf{g}_{\boldsymbol{\rho}} \mathbf{f}$$

Our basis will follow the SILH criteria:

Giudice, Grojean, AP, Rattazzi 07

$$\mathcal{L}_{\text{SILF}} = \frac{c_H}{2f^2} \partial^{\mu} \left(H^{\dagger} H \right) \partial_{\mu} \left(H^{\dagger} H \right) + \frac{c_T}{2f^2} \left(H^{\dagger} \overrightarrow{D^{\mu}} H \right) \left(H^{\dagger} \overleftarrow{D}_{\mu} H \right) - \frac{c_6 \lambda}{f^2} \left(H^{\dagger} H \right)^3 + \left(\frac{c_y y_f}{f^2} H^{\dagger} H \overline{f}_L H f_R + \text{h.c.} \right) + \frac{i c_W g}{2m_{\rho}^2} \left(H^{\dagger} \sigma^i \overrightarrow{D^{\mu}} H \right) (D^{\nu} W_{\mu\nu})^i + \frac{i c_B g'}{2m_{\rho}^2} \left(H^{\dagger} \overrightarrow{D^{\mu}} H \right) (\partial^{\nu} B_{\mu\nu}) + \frac{i c_H w g}{16\pi^2 f^2} (D^{\mu} H)^{\dagger} \sigma^i (D^{\nu} H) W_{\mu\nu}^i + \frac{i c_H B g'}{16\pi^2 f^2} (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu} + \frac{c_{\gamma} g'^2}{16\pi^2 f^2} \frac{g^2}{g_{\rho}^2} H^{\dagger} H B_{\mu\nu} B^{\mu\nu} + \frac{c_g g_S^2}{16\pi^2 f^2} \frac{y_t^2}{g_{\rho}^2} H^{\dagger} H G_{\mu\nu}^a G^{a\mu\nu}.$$

$$\mathbf{\Lambda} = \mathbf{m}_{\mathbf{\rho}} = \mathbf{g}_{\mathbf{\rho}} \mathbf{f}$$

"tree-level" operators "loop" operators

Our basis will follow the SILH criteria:

Giudice, Grojean, AP, Rattazzi 07

$$\mathcal{L}_{\text{SILF}} = \frac{c_H}{2f^2} \partial^{\mu} \left(H^{\dagger} H \right) \partial_{\mu} \left(H^{\dagger} H \right) + \frac{c_T}{2f^2} \left(H^{\dagger} \overrightarrow{D^{\mu}} H \right) \left(H^{\dagger} \overrightarrow{D}_{\mu} H \right) \\ - \frac{c_6 \lambda}{f^2} \left(H^{\dagger} H \right)^3 + \left(\frac{c_y y_f}{f^2} H^{\dagger} H \overline{f}_L H f_R + \text{h.c.} \right) \\ + \frac{i c_W g}{2m_{\rho}^2} \left(H^{\dagger} \sigma^i \overrightarrow{D^{\mu}} H \right) (D^{\nu} W_{\mu\nu})^i + \frac{i c_B g'}{2m_{\rho}^2} \left(H^{\dagger} \overrightarrow{D^{\mu}} H \right) (\partial^{\nu} B_{\mu\nu}) \\ + \frac{i c_H W g}{16\pi^2 f^2} (D^{\mu} H)^{\dagger} \sigma^i (D^{\nu} H) W_{\mu\nu}^i + \frac{i c_H B g'}{16\pi^2 f^2} (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu} \\ + \frac{c_\gamma g'^2}{16\pi^2 f^2} \frac{g^2}{g_{\rho}^2} H^{\dagger} H B_{\mu\nu} B^{\mu\nu} + \frac{c_g g_S^2}{16\pi^2 f^2} \frac{y_t^2}{g_{\rho}^2} H^{\dagger} H G_{\mu\nu}^a G^{a\mu\nu}.$$

$$\mathbf{\Lambda} = \mathbf{m}_{\rho} = \mathbf{g}_{\rho} \mathbf{f}$$
"tree-level" operators "loop" operators

"tree-level" operators (or "current-current"):

From integrating out, at tree-level, heavy fields as occurs, not only in renormalizable weakly-coupled theories, but also in some holographic/deconstructed version of strongly-coupled theories

 $g_{\rho} \sim 4\pi/\sqrt{N}$

• Also right parametrization for strongly coupled theories of a composite "meson" Higgs (with no small parameter): $\mathbf{g}_{\rho} \sim \mathbf{4}\pi$

$$\mathcal{L}_{\text{SILF}} = \frac{c_H}{2f^2} \partial^{\mu} \left(H^{\dagger} H \right) \partial_{\mu} \left(H^{\dagger} H \right) + \frac{c_T}{2f^2} \left(H^{\dagger} \overrightarrow{D^{\mu}} H \right) \left(H^{\dagger} \overrightarrow{D}_{\mu} H \right) \\ - \frac{c_6 \lambda}{f^2} \left(H^{\dagger} H \right)^3 + \left(\frac{c_y y_f}{f^2} H^{\dagger} H \overline{f}_L H f_R + \text{h.c.} \right) \\ + \frac{i c_W g}{2m_{\rho}^2} \left(H^{\dagger} \sigma^i \overrightarrow{D^{\mu}} H \right) (D^{\nu} W_{\mu\nu})^i + \frac{i c_B g'}{2m_{\rho}^2} \left(H^{\dagger} \overrightarrow{D^{\mu}} H \right) (\partial^{\nu} B_{\mu\nu}) \\ + \frac{i c_H W g}{16\pi^2 f^2} (D^{\mu} H)^{\dagger} \sigma^i (D^{\nu} H) W_{\mu\nu}^i + \frac{i c_H B g'}{16\pi^2 f^2} (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu} \\ + \frac{c_{\gamma} g'^2}{16\pi^2 f^2} \frac{g^2}{g_{\rho}^2} H^{\dagger} H B_{\mu\nu} B^{\mu\nu} + \frac{c_g g_S^2}{16\pi^2 f^2} \frac{y_t^2}{g_{\rho}^2} H^{\dagger} H G_{\mu\nu}^a G^{a\mu\nu}.$$

Let me open a parenthesis...

Recently this approach has been criticized by Jenkins, Manohar, Trott 13...

They confused what we called "minimal coupling" in the SILH paper with the usual definition of minimal coupling: "replace derivatives with covariant derivatives"

Our basis classification is well-defined and not ambiguous

Recently this approach has been criticized by Jenkins, Manohar, Trott 13...

They confused what we called "minimal coupling" in the SILH paper with the usual definition of minimal coupling: "replace derivatives with covariant derivatives"

Our basis classification is well-defined and not ambiguous

Giudice, Grojean, AP, Rattazzi 07

According to the general expression in eq. (2.5), four-derivative operators like those in eqs. (2.9)–(2.10) can arise at tree level. However in "normal" theories, the classical action including the heavy fields Φ involves at most two derivatives. Holographic Goldstone models and Little Higgs are of this type. To be more specific, these theories correspond to minimally-coupled field theories where the states have spin ≤ 1 , and all vectors are associated to (spontaneously-broken) gauge symmetries.⁶ In the case of minimally-coupled theories, higher-derivative operators like those in eqs. (2.9)–(2.10) can appear in the classical low-energy action below m_{ρ} only if there exists a field Φ with the appropriate quantum numbers to mediate the corresponding operator. In this respect we remark an interesting They also claim that this separation of "tree-level" vs "loop" operators is not present in certain effective theories

I fully agree, but it is present in most models which we are interested in

They claim neither in the QCD chiral lagrangian...

They also claim that this separation of "tree-level" vs "loop" operators is not present in certain effective theories

I fully agree, but it is present in most models which we are interested in

They claim neither in the QCD chiral lagrangian... really? Inspiration from QCD: Chiral lagrangian for pions:

Ordinary basis:

$$\mathcal{L}_{\chi} = \frac{f^2}{4} \langle D^{\mu}UD_{\mu}U \rangle + \cdots$$

$$- iL_9 \langle F_R^{\mu\nu}D_{\mu}UD_{\nu}U^{\dagger} + F_L^{\mu\nu}D_{\mu}U^{\dagger}D_{\nu}U \rangle + L_{10} \langle U^{\dagger}F_R^{\mu\nu}UF_{L\mu\nu} \rangle$$
In a "SILH basis":
"tree": $\langle (U^{\dagger}\overrightarrow{D_{\nu}}U)D_{\mu}F_L^{\mu\nu} + (U\overrightarrow{D_{\nu}}U^{\dagger})D_{\mu}F_R^{\mu\nu} \rangle$ "loop"
Experiments say: $\frac{c_{\text{loop}}}{c_{\text{tree}}} = \frac{L_9 + L_{10}}{L_9 - L_{10}} \simeq \frac{6.9 - 5.5}{6.9 + 5.5} \sim 0.1$

Smaller by a "loop" ~ 1/Nc ~ 1/3!

...parenthesis closed

Choosing the basis for dim-6 operators

As in the SILH, we will separate "tree" vs "loop" operators:

Our basis:

operators made of bosons

$$\mathcal{O}_{H} = \frac{1}{2} (\partial^{\mu} |H|^{2})^{2}$$
$$\mathcal{O}_{T} = \frac{1}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H \right)^{2}$$
$$\mathcal{O}_{6} = \lambda |H|^{6}$$
$$\mathcal{O}_{W} = \frac{ig}{2} \left(H^{\dagger} \sigma^{a} \overset{\leftrightarrow}{D}^{\mu} H \right) D^{\nu} W^{a}_{\mu\nu}$$
$$\mathcal{O}_{B} = \frac{ig'}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D}^{\mu} H \right) \partial^{\nu} B_{\mu\nu}$$
$$\mathcal{O}_{2W} = -\frac{1}{2} (D^{\mu} W^{a}_{\mu\nu})^{2}$$
$$\mathcal{O}_{2B} = -\frac{1}{2} (\partial^{\mu} B_{\mu\nu})^{2}$$
$$\mathcal{O}_{2G} = -\frac{1}{2} (D^{\mu} G^{a}_{\mu\nu})^{2}$$
$$\mathcal{O}_{BB} = g'^{2} |H|^{2} B_{\mu\nu} B^{\mu\nu}$$
$$\mathcal{O}_{GG} = g^{2}_{s} |H|^{2} G^{a}_{\mu\nu} G^{a\mu\nu}$$
$$\mathcal{O}_{HW} = ig(D^{\mu} H)^{\dagger} \sigma^{a} (D^{\nu} H) W^{a}_{\mu\nu}$$
$$\mathcal{O}_{HB} = ig'(D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu}$$
$$\mathcal{O}_{3W} = g \epsilon_{abc} W^{a\nu}_{\mu} W^{b}_{\nu\rho} W^{c \rho\mu}$$
$$\mathcal{O}_{3G} = g_{s} f_{abc} G^{a\nu}_{\mu} G^{b}_{\nu\rho} G^{c \rho\mu}$$

+ 6 CP-odd by $F \rightarrow \tilde{F}$

operators made of fermions

$\mathcal{O}_{y_u} = y_u H ^2 \bar{Q}_L \tilde{H} u_R$	$\mathcal{O}_{y_d} = y_d H ^2 \bar{Q}_L H d_R$	$\mathcal{O}_{y_l} = y_l H ^2 \bar{L}_L H e_R$
$\mathcal{O}_R^u = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{u}_R \gamma^\mu u_R)$	$\mathcal{O}_R^d = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{d}_R \gamma^\mu d_R)$	$\mathcal{O}_R^l = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{e}_R \gamma^\mu e_R)$
$\mathcal{O}_L^q = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{Q}_L \gamma^\mu Q_L)$		$\mathcal{O}_L^l = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{L}_L \gamma^\mu L_L)$
$\mathcal{O}_L^{(3)q} = (iH^{\dagger}\sigma^a \overset{\leftrightarrow}{D_{\mu}}H)(\bar{Q}_L\gamma^{\mu}\sigma^a Q_L)$		$\mathcal{O}_L^{(3)l} = (iH^{\dagger}\sigma^a \overset{\leftrightarrow}{D}_{\mu}H)(\bar{L}_L\gamma^{\mu}\sigma^a L_L)$
$\mathcal{O}_R^{ud} = y_u^{\dagger} y_d (i \widetilde{H}^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H) (\bar{u}_R \gamma^{\mu} d_R)$		
$\mathcal{O}^u_{DB} = y_u \bar{Q}_L \sigma^{\mu\nu} u_R \tilde{H} g' B_{\mu\nu}$	$\mathcal{O}^d_{DB} = y_d \bar{Q}_L \sigma^{\mu\nu} d_R H g' B_{\mu\nu}$	$\mathcal{O}_{DB}^{l} = y_l \bar{L}_L \sigma^{\mu\nu} e_R H g' B_{\mu\nu}$
$\mathcal{O}^u_{DW} = y_u \bar{Q}_L \sigma^{\mu\nu} u_R \sigma^a \widetilde{H} g W^a_{\mu\nu}$	$\mathcal{O}_{DW}^d = y_d \bar{Q}_L \sigma^{\mu\nu} d_R \sigma^a H g W^a_{\mu\nu}$	$\mathcal{O}^e_{DW} = y_l \bar{L}_L \sigma^{\mu\nu} e_R \sigma^a H g W^a_{\mu\nu}$
$\mathcal{O}_{DG}^{u} = y_u \bar{Q}_L \sigma^{\mu\nu} T^a u_R \widetilde{H} g_s G^a_{\mu\nu}$	$\mathcal{O}_{DG}^d = y_d \bar{Q}_L \sigma^{\mu\nu} T^a d_R H g_s G^a_{\mu\nu}$	

+ 4-fermion operators

Some redundancy: $c_W \mathcal{O}_W \iff c_W \frac{g^2}{g_*^2} \left[-\frac{3}{2} \mathcal{O}_H + 2\mathcal{O}_6 + \frac{1}{2} \mathcal{O}_y + \frac{1}{4} \sum_f \mathcal{O}_L^{(3)f} \right],$ $c_B \mathcal{O}_B \iff c_B \frac{g'^2}{g_*^2} \left[-\frac{1}{2} \mathcal{O}_T + \frac{1}{2} \sum_f \left(Y_L^f \mathcal{O}_L^f + Y_R^f \mathcal{O}_R^f \right) \right],$

Implication on Higgs physics

(working at the linear level: ~ I/Λ^2)

Implication on Higgs physics:

$$\begin{array}{|c|c|c|c|c|} & \mathcal{O}_{H} = \frac{1}{2} (\partial^{\mu} |H|^{2})^{2} \\ & \mathcal{O}_{T} = \frac{1}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H \right)^{2} \\ & \mathcal{O}_{G} = \lambda |H|^{6} \\ \hline & \mathcal{O}_{W} = \frac{ig}{2} \left(H^{\dagger} \sigma^{a} \overset{\leftrightarrow}{D^{\mu}} H \right) D^{\nu} W^{a}_{\mu\nu} \\ & \mathcal{O}_{B} = \frac{ig'}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D^{\mu}} H \right) \partial^{\nu} B_{\mu\nu} \\ & \mathcal{O}_{2W} = -\frac{1}{2} (D^{\mu} W^{a}_{\mu\nu})^{2} \\ & \mathcal{O}_{2B} = -\frac{1}{2} (\partial^{\mu} B_{\mu\nu})^{2} \\ & \mathcal{O}_{2G} = -\frac{1}{2} (D^{\mu} G^{a}_{\mu\nu})^{2} \\ & \mathcal{O}_{BB} = g'^{2} |H|^{2} B_{\mu\nu} B^{\mu\nu} \\ & \mathcal{O}_{GG} = g^{2}_{s} |H|^{2} G^{a}_{\mu\nu} G^{a\mu\nu} \\ & \mathcal{O}_{HW} = ig (D^{\mu} H)^{\dagger} \sigma^{a} (D^{\nu} H) W^{a}_{\mu\nu} \\ & \mathcal{O}_{HB} = ig' (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu} \\ & \mathcal{O}_{3W} = g \epsilon_{abc} W^{a\nu}_{\mu} W^{b}_{\nu\rho} W^{c\rho\mu} \\ & \mathcal{O}_{3G} = g_{s} f_{abc} G^{a\nu}_{\mu} G^{b}_{\nu\rho} G^{c\rho\mu} \end{array}$$

$\mathcal{O}_{y_u} = y_u H ^2 \bar{Q}_L \tilde{H} u_R$	$\mathcal{O}_{y_d} = y_d H ^2 \bar{Q}_L H d_R$	$\mathcal{O}_{y_l} = y_l H ^2 \bar{L}_L H e_R$
$\mathcal{O}_R^u = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{u}_R \gamma^\mu u_R)$	$\mathcal{O}_R^d = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{d}_R \gamma^\mu d_R)$	$\mathcal{O}_R^l = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{e}_R \gamma^\mu e_R)$
$\mathcal{O}_L^q = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{Q}_L \gamma^\mu Q_L)$		$\mathcal{O}_L^l = (iH^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H)(\bar{L}_L \gamma^{\mu} L_L)$
$\mathcal{O}_L^{(3)q} = (iH^{\dagger}\sigma^a \overset{\leftrightarrow}{D_{\mu}}H)(\bar{Q}_L\gamma^{\mu}\sigma^a Q_L)$		$\mathcal{O}_L^{(3)l} = (iH^{\dagger}\sigma^a \overset{\leftrightarrow}{D}_{\mu}H)(\bar{L}_L\gamma^{\mu}\sigma^a L_L)$
$\mathcal{O}_R^{ud} = y_u^{\dagger} y_d (i \widetilde{H}^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H) (\bar{u}_R \gamma^{\mu} d_R)$		

Implication on Higgs physics:

$\mathcal{O}_{y_u} = y_u H ^2 \bar{Q}_L \widetilde{H} u_R$	$\mathcal{O}_{y_d} = y_d H ^2 \bar{Q}_L H d_R$	$\mathcal{O}_{y_l} = y_l H ^2 \bar{L}_L H e_R$
$\mathcal{O}_R^u = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{u}_R \gamma^\mu u_R)$	$\mathcal{O}_R^d = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{d}_R \gamma^\mu d_R)$	$\mathcal{O}_R^l = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{e}_R \gamma^\mu e_R)$
$\mathcal{O}_L^q = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{Q}_L \gamma^\mu Q_L)$		$\mathcal{O}_L^l = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{L}_L \gamma^\mu L_L)$
$\mathcal{O}_L^{(3)q} = (iH^{\dagger}\sigma^a \overset{\leftrightarrow}{D}_{\mu}H)(\bar{Q}_L\gamma^{\mu}\sigma^a Q_L)$		$\mathcal{O}_L^{(3)l} = (iH^{\dagger}\sigma^a \overset{\leftrightarrow}{D}_{\mu}H)(\bar{L}_L\gamma^{\mu}\sigma^a L_L)$
$\mathcal{O}_R^{ud} = y_u^{\dagger} y_d (i \widetilde{H}^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H) (\bar{u}_R \gamma^{\mu} d_R)$		

$\mathcal{O}_{y_u} = y_u H ^2 \bar{Q}_L \tilde{H} u_R$	$\mathcal{O}_{y_d} = y_d H ^2 \bar{Q}_L H d_R$	$\mathcal{O}_{y_l} = y_l H ^2 \bar{L}_L H e_R$
$\mathcal{O}_R^u = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{u}_R \gamma^\mu u_R)$	$\mathcal{O}_R^d = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{d}_R \gamma^\mu d_R)$	$\mathcal{O}_R^l = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{e}_R \gamma^\mu e_R)$
$\mathcal{O}_L^q = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{Q}_L \gamma^\mu Q_L)$		$\mathcal{O}_L^l = (iH^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H)(\bar{L}_L \gamma^{\mu} L_L)$
$\mathcal{O}_L^{(3)q} = (iH^{\dagger}\sigma^a \overset{\leftrightarrow}{D_{\mu}}H)(\bar{Q}_L\gamma^{\mu}\sigma^a Q_L)$		$\mathcal{O}_L^{(3)l} = (iH^{\dagger}\sigma^a \overset{\leftrightarrow}{D_{\mu}}H)(\bar{L}_L\gamma^{\mu}\sigma^a L_L)$
$ \qquad \qquad \mathcal{O}_R^{ud} = y_u^{\dagger} y_d (i \widetilde{H}^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H) (\bar{u}_R \gamma^{\mu} d_R) $		

$\mathcal{O}_{y_u} = y_u H ^2 \bar{Q}_L \tilde{H} u_R$	$\mathcal{O}_{y_d} = y_d H ^2 \bar{Q}_L H d_R$	$\mathcal{O}_{y_l} = y_l H ^2 \bar{L}_L H e_R$
$\mathcal{O}_R^u = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{u}_R \gamma^\mu u_R)$	$\mathcal{O}_R^d = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{d}_R \gamma^\mu d_R)$	$\mathcal{O}_R^l = (iH^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H)(\bar{e}_R \gamma^{\mu} e_R)$
$\mathcal{O}_L^q = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{Q}_L \gamma^\mu Q_L)$		$\mathcal{O}_L^l = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{L}_L \gamma^\mu L_L)$
$\mathcal{O}_L^{(3)q} = (iH^{\dagger}\sigma^a \overset{\leftrightarrow}{D_{\mu}}H)(\bar{Q}_L\gamma^{\mu}\sigma^a Q_L)$		$\mathcal{O}_L^{(3)l} = (iH^{\dagger}\sigma^a \overset{\leftrightarrow}{D_{\mu}}H)(\bar{L}_L\gamma^{\mu}\sigma^a L_L)$
$\mathcal{O}_R^{ud} = y_u^{\dagger} y_d (i \widetilde{H}^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H) (\bar{u}_R \gamma^{\mu} d_R)$		

a_{WB}	a_h	a_{hl}^s	a_{hl}^s a_{hl}^t		a_{hq}^t	a_{hu}	a_{hd}	a_{he}	a_W
4.6 ± 7.5	$0.0 \pm 26.$	2.8 ± 6.7	$0.9 \pm 21.$	-0.9 ± 2.2	$0.9 \pm 21.$	-3.6 ± 8.9	1.7 ± 4.4	$5.6 \pm 13.$	$-3.9 \pm 32.$

TABLE I: Best fit values and 1σ errors, in units of TeV⁻², of the coefficients of dimension 6 operators in the HS basis when the coefficient of four-fermion operators are assumed to vanish.

a_{WB}	a_h	a_{hl}^s	a_{hl}^t	a_{hq}^s	a_{hq}^t	a_{hu}	a_{hd}	a_{he}	a_W
4.6 ± 7.5	$5 0.0 \pm 26.$	2.8 ± 6.7	$0.9 \pm 21.$	-0.9 ± 2.2	$0.9 \pm 21.$	-3.6 ± 8.9	1.7 ± 4.4	$5.6 \pm 13.$	$-3.9 \pm 32.$

TABLE I: Best fit values and 1σ errors, in units of TeV⁻², of the coefficients of dimension 6 operators in the HS basis when the coefficient of four-fermion operators are assumed to vanish.

Some other groups claim an overconstrained set: T.Corbett, O.J.P. Eboli, J. Gonzalez–Fraile, M.C.Gonzalez–Garcia 12

4 operators involving Higgs and gauge bosons claimed to be unconstrained from fermion physics, while we have 6!

	a_{WB}	a_h		a_{hl}^s a_{hl}^t		a_{hq}^s	a_{hq}^t	a_{hu}	a_{hd}	a_{he}	a_W		
4.6	6 ± 7.5	0.0 =	± 26.	2.8 ± 6.7	0.9 =	± 21.	-0.9 ± 2.2	$0.9 \pm 21.$	-3.6 ± 8.9	1.7 ± 4.4	$5.6 \pm 13.$	-3.9 ± 3	32.

TABLE I: Best fit values and 1σ errors, in units of TeV⁻², of the coefficients of dimension 6 operators in the HS basis when the coefficient of four-fermion operators are assumed to vanish.

Some other groups claim an overconstrained set: T.Corbett, O.J.P. Eboli, J. Gonzalez–Fraile, M.C.Gonzalez–Garcia 12

4 operators involving Higgs and gauge bosons

One operator moved to operators made of fermions and another thought to be constrained by the S-parameter...

but fermion physics alone cannot constrain these two!

Towards the ultimate SM fit

Put bound on coefficients model-independently (allowing to vary the others) > previous analysis always turning one by one the coefficients Step by a step process instead of a global fit <u>Assumptions:</u>

- Lepton & baryon number
- Flavor symmetries (MFV)
- Neglect \mathcal{O}_{3W} (can be relaxed without great impact)

Input: α , Mz, GF

Mainly two types of SM deformations:

2) New interactions growing with the energy:

Mainly two types of SM deformations: I) Breaking of EW symmetry: W.Z 🔨 LEP key-player 2) New interactions growing with the energy: $\sum_{f} \sum_{f} \frac{E^2}{\Lambda^2}$ LHC key-player

Intensity frontier vs high-energy frontier

I) Lepton-widths of the Z & Mw:

.EPI:
$$\Gamma(Z \to l_L l_L)$$

 $\Gamma(Z \to l_R l_R)$
 $\Gamma(Z \to \nu\nu) \equiv \Gamma_Z - \Gamma_{vis}$

Tevatron: M_W

Substrain deformation on Z/W propagators and ZII vertices at per-mille

Kaon decays (KLOE) + β-decay measurements has allowed to put a very stringent bound on quarklepton universality of the W interactions

Second constrain deformations on the Wud vertex at per-mille

3) Z decay-widths into quarks:

difficult to disentangle the different contributions, but same combination of coefficients enter in the H decay:

4) Gauge boson 3-vertices:

LEPII: $e^+e^- \rightarrow WW$

... LHC becoming also competitive

No bound from EWPT on $h \rightarrow Z\gamma$ (only from direct searches)

... last hope for O(I) deviations?

Predictions on h→Wff,Zff:

(assuming m_f=0 and CP-conservation)

$$\mathcal{M}(h \to VJ) = v^{-1} \epsilon_1^{*\mu} J_2^{\nu} \left[A^V m_H^2 \eta_{\mu\nu} + B^V q_{2\mu} q_{1\nu} \right]$$
$$A^V = \frac{a_1^V + a_2^V q_2^2}{q_2^2 - M_V^2} + \frac{a_3^V}{q_2^2} \quad , \quad B^V = \frac{b_1^V}{q_2^2 - M_V^2} + \frac{b_2^V}{q_2^2}$$

5 (for the Z) + 3 (for the W) (per fermion type) parameters "ready" to be measured Imposing bounds at per-mille:

5+3 → **2**

Imposing bounds at per-cent:

 $2 \rightarrow 0$

Going beyond tree-level...

One-loop operator mixing

Interesting situations could arise:

dominant effect from running!!

Jenkins, Grojean, Manohar, Trott 13 (JGMT) claimed to be the case for $h \rightarrow \gamma \gamma$:

When the new physics can be characterized by a single scale M_{ρ} and a coupling g_{ρ} , simple physical arguments lead to an interesting power counting for the Wilson coefficients of our operator basis [13]. For coefficients $\bar{c}_i \equiv c_i v^2 / \Lambda^2$, we find the power counting

$$\bar{c}_B, \bar{c}_W, \bar{c}_{WB}, \bar{c}_{DB}, \bar{c}_{DW} \sim O\left(\frac{v^2}{M_\rho^2}\right),$$

$$(4.6)$$

$$\bar{c}_G, \bar{c}_{\gamma\gamma} = \bar{c}_W + \bar{c}_B - \bar{c}_{WB}, \bar{c}_{\gamma Z} = \frac{\bar{c}_W}{\tan \theta_W} - \bar{c}_B \tan \theta_W - \frac{\bar{c}_{WB}}{\tan 2\theta_W} \sim O\left(\frac{g_\rho^2}{16\pi^2} \frac{v^2}{M_\rho^2}\right), \quad (4.7)$$

where the last row follows from the fact that the Higgs boson cannot decay to $\gamma\gamma$, $Z\gamma$ and gg at tree-level in any theory that satisfies the minimal coupling assumption. Note that, when a discrete symmetry is present, there can be further suppression of the operators in the first row, as is the case in R parity conserving SUSY scenarios where there is no tree-level contribution to the S parameter. Also, if the Higgs boson emerges as a pseudo Nambu-Goldstone boson of the new physics sector, the Higgs decays to $\gamma\gamma$ and gg can only be obtained from a loop that involves couplings which break the global shift symmetry of the pseudo Nambu-Goldstone boson. In that case, we obtain a further suppression of g_{SM}^2/g_{ρ}^2 [13], so

$$\bar{c}_G, \bar{c}_{\gamma\gamma} \sim O\left(\frac{g_{SM}^2}{g_{\rho}^2} \frac{g_{\rho}^2}{16\pi^2} \frac{v^2}{M_{\rho}^2}\right).$$
 (4.8)

Here, g_{SM} denotes a combination of the SM couplings $g_{1,2}, y_i$. The simple power counting above demonstrates the importance of the RGE mixing between the operators we are considering:

$$c_{\gamma\gamma}(\mu) \sim c_{\gamma\gamma}(\Lambda) + \frac{g_{SM}^2}{16\pi^2} \log\left(\frac{\Lambda}{\mu}\right) c_i(\Lambda),$$
 (4.9)

and parametrically the ratio of the RGE contribution over the new physics contribution to $c_{\gamma\gamma}$ scales like $(g_{SM}^2/g_{\rho}^2)\log(\Lambda/\mu)$ in the general case and is further enhanced to $\log(\Lambda/\mu)$

Example given: SILH case –

We found that this is not the case Another example of: proper basis, simple solution

Elias-Miro, Espinosa, Masso, AP 13

Our basis:

$$\mathcal{O}_B = \frac{ig'}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D^{\mu}} H \right) \partial^{\nu} B_{\mu\nu}$$
$$\mathcal{O}_W = \frac{ig}{2} \left(H^{\dagger} \sigma^a \overset{\leftrightarrow}{D^{\mu}} H \right) D^{\nu} W^a_{\mu\nu}$$

 $\mathcal{O}_{BB} = g'^2 |H|^2 B_{\mu\nu} B^{\mu\nu}$ $\mathcal{O}_{HW} = ig(D^{\mu}H)^{\dagger} \sigma^a (D^{\nu}H) W^a_{\mu\nu}$ $\mathcal{O}_{HB} = ig'(D^{\mu}H)^{\dagger} (D^{\nu}H) B_{\mu\nu}$

We found that this is not the case Another example of: proper basis, simple solution

Elias-Miro, Espinosa, Masso, AP 13

Relation between both:

$$\mathcal{O}_B = \mathcal{O}_{HB} + \frac{1}{4}\mathcal{O}_{WB} + \frac{1}{4}\mathcal{O}_{BB} ,$$

$$\mathcal{O}_W = \mathcal{O}_{HW} + \frac{1}{4}\mathcal{O}_{WW} + \frac{1}{4}\mathcal{O}_{WB}$$

An even better basis:

$$\frac{d}{d\log\mu}\begin{pmatrix}\hat{\kappa}_{BB}\\\hat{\kappa}_{WW}\\\hat{\kappa}_{WB}\\\hat{c}_{W}\\\hat{c}_{B}\end{pmatrix} = \begin{pmatrix}\hat{\Gamma} & \mathbf{0}_{3\times 2}\\\mathbf{0}_{2\times 3} & \hat{X}\end{pmatrix}\begin{pmatrix}\hat{\kappa}_{BB}\\\hat{\kappa}_{WW}\\\hat{\kappa}_{WB}\\\hat{c}_{W}\\\hat{c}_{B}\end{pmatrix}$$

Inspiration from QCD: Chiral lagrangian for pions:

Ordinary basis:

$$\mathcal{L}_{\chi} = \frac{f^2}{4} \langle D^{\mu}UD_{\mu}U \rangle + \cdots$$

$$- iL_9 \langle F_R^{\mu\nu}D_{\mu}UD_{\nu}U^{\dagger} + F_L^{\mu\nu}D_{\mu}U^{\dagger}D_{\nu}U \rangle + L_{10} \langle U^{\dagger}F_R^{\mu\nu}UF_{L,\mu\nu} \rangle$$
In a "SILH basis":

"tree": $\langle (U^{\dagger}\overset{\leftrightarrow}{D_{\nu}}U)D_{\mu}F_L^{\mu\nu} + (U\overset{\leftrightarrow}{D_{\nu}}U^{\dagger})D_{\mu}F_R^{\mu\nu} \rangle$ "loop"

Experiments say: $\frac{c_{\text{loop}}}{c_{\text{tree}}} = \frac{L_9 + L_{10}}{L_9 - L_{10}} \simeq \frac{6.9 - 5.5}{6.9 + 5.5} \sim 0.1$

Smaller by a "loop" ~ 1/Nc ~ 1/3!

Not renormalized by loop of pions: $\gamma_{\text{loop}} \propto \gamma_9 + \gamma_{10} = \frac{1}{64\pi^2} - \frac{1}{64\pi^2} = 0$

Final answer:

hyy:
$$\kappa_{\gamma\gamma}(m_h) = \kappa_{\gamma\gamma}(\Lambda) - \gamma_{\gamma\gamma}\log\frac{\Lambda}{m_h}$$

$$16\pi^2 \gamma_{\gamma\gamma} = \left[6y_t^2 - \frac{3}{2}(3g^2 + {g'}^2) + 12\lambda \right] \kappa_{BB} + \left[\frac{3}{2}g^2 - 2\lambda \right] (\kappa_{HW} + \kappa_{HB}) \; .$$

dominant if K_{YY} is one-loop suppressed but not K_{HW}+K_{HB}

e.g. H as PGB:

 $H \rightarrow H+c$ means $K_{BB}=0$ but $K_{HW}+K_{HB}\neq 0$

Conclusions

- Dim-6 operators give a model-independent way to search for open doors to leave the SM
- Bases separating "tree" & "loop" operators can be useful for the analysis
- Implications on Higgs decays after an educated fit to the SM: Wide open door: h→Zγ
 Open doors: h→γγ, GG→h, h→ff
 Almost closed doors: h→Zff,Wff
- At the one-loop order, no operator mixing from "tree" to "loop" operators