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Plenty of new data from the LHC: Implications?

* Most of us like to look for implications in specific
scenarios, motivated by naturalness, ...
Top-down approach: MSSM, composite Higgs,...

* But not having found anything, it makes sense to be
more open to alternatives

(For example, even in susy scenarios, plenty of possibilities
beyond the MSSM (e.g. Higgs as a partner of a SM lepton))

\> Approach to look for deviations from the SM

more model-independent:
SM + higher-dimensional operators



Assuming new-physics scale A is heavier than Mw, we
can perform an expansion in derivatives and SM fields

(assuming lepton & baryon number)
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deviations
from the SM

Lg: made of local dim-6 operators

* How many? What is the best basis of operators!?

* What are the implications (on Higgs)?



Classification of dim-6 operators

Search for the set of independent operators forming a basis:

Long story: Buchmuller&Wyler 86 ... Grzadkowski et al. 10

from 80 operators ...to 59 operators  (for one family)

Reduction of the set by using field redefinitions:

(equivalently, using EOM)
c.8. H — H (14 angy|HI?/A?)

<
B, — B, +igag(H'D"H)/A?
B,u — B,u -+ 0423(5”3,,#)/1\2



59 dimension-six operators (for one family)
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Choosing the basis for dim-6 operators

Physics is basis-independent, as long as you keep all operators.
But in practice this is difficult, so people truncate the set,
giving strong dependence on the choice of the basis

‘> we will see examples in the literature of

how the use of the non-appropriate basis
can mislead people

Some criteria for a convenient basis:

* Clean operator « experiment connection

* Capture in few operators the impact of different BSM:
Universal theories, weakly-coupled theories (MSSM), ...

» Keep separated operators of possible different origins and
coefficients of different expected size

* Keep symmetries of the BSM manifest



Our basis will follow the SILH criteria: Giudice, Grojean APRattazzi 07
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“tree-level” operators (or “current-current”):

/ / 1,

f PR
/ i J“JH
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From integrating out, at tree-level, heavy fields
as occurs, not only in renormalizable weakly-coupled theories,
but also in some holographic/deconstructed version

of strongly-coupled theories




* Also right parametrization for strongly coupled
theories of a composite “meson” Higgs

(with no small parameter): €o~ 4x
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Let me open a parenthesis...



Recently this approach has been
criticized by Jenkins, Manohar, Trott | 3...

They confused what we called “minimal coupling”
in the SILH paper with the usual definition
of minimal coupling: “replace derivatives with covariant
derivatives”

Our basis classification is well-defined and not ambiguous
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Giudice,Grojean,APRattazzi 07

According to the general expression in eq. (2.5), four-derivative operators like those
in egs. (2.9)—(2.10) can arise at tree level. However in “normal” theories, the classical ac-
tion including the heavy fields ® involves at most two derivatives. Holographic Goldstone

models and Little Higgs are of this type. To be more specific, these theories correspond
to minimally-coupled field theories where the states have spin < 1, and all vectors are

associated to (spontaneously-broken) gauge symmetries.® In the case of minimally-coupled
theories, higher-derivative operators like those in egs. (2.9)—(2.10) can appear in the classi-
cal low-energy action below m, only if there exists a field ® with the appropriate quantum
numbers to mediate the corresponding operator. In this respect we remark an interesting



They also claim that this separation
of “tree-level” vs “loop” operators
is not present in certain effective theories

| fully agree, but it is present in most models
which we are interested in

They claim neither in the QCD chiral lagrangian...



They also claim that this separation
of “tree-level” vs “loop” operators
is not present in certain effective theories

| fully agree, but it is present in most models
which we are interested in

They claim neither in the QCD chiral lagrangian...

really?



Inspiration from QCD: Chiral lagrangian for pions:

Ordinary basis:
L, = fz2<D“UDuw T

— iLg (FE'D,UD,U" + F' D, U'D,U) + Ly, (U F'UFy,,)

In 2 “SILH basis’’:
11 ”» AN U A U 1 9
tree”: ((U'D,U)D,F" + (UD,UD,FI") loop

Cloop - Lg —+ Ll() N 0.9 —95.5

— ~ ~ 0.1
Ctree Lg — LlO 0.9 -+ 0.9

Experiments say:

Smaller by a ““loop” ~ I/Nc~ 1/3!



..parenthesis closed



Choosing the basis for dim-6 operators

As in the SILH, we will separate “tree” vs “loop” operators:

»C6 _ Zg*cuoh _|_Z szozz _|_Z /{230

g+ = generic coupling Rig



O = 5(0"|H[*)*

Our basis:

Or =3 (H'D,H) :
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+ 6 CP-odd by F—F




operators made of fermions

Oy, = yu| H*QrHug

0,, = yd\H’ QrHdg

Oyl = yl‘H‘ziLHeR

0% = (iH' D, H)(ip"ug)

0} = (iH' D, H)(Qu1"Qu)
OP1 = (i1 D, H)(Q17"0"Q1)
O = ylya(i HTDMH)(URW"CZR)
Opp = yu_QLUWUR g/B,W
Obw = yuQrotur aaHgW"’
Yo = YuQro* T ug H 9sG .,

Some redundancy:

OR — (ZHTDMH>(dR’)/“dR)

Oy = yaQro" dp Hg' By,
O%W — deLO'”VdR O'aHgWa
O%q = yaQroT*dr Hg,GY,

=
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Implication on Higgs
physics

(working at the linear level: ~ 1/A\?)



Implication on

Higgs physics:
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Implication on

Higgs physics:
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Implication on
Higgs physics:
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Some groups claim yes:  B.Grinstein, C.W.Murphy and D.Pirtskhalava |3

Global fit in other bases don’t show big constraints
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TABLE I: Best fit values and 1o errors, in units of TeV =2, of the coefficients of
dimension 6 operators in the HS basis when the coefficient of four-fermion operators are

assumed to vanish.
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Some groups claim yes:  B.Grinstein, C.W.Murphy and D.Pirtskhalava |3

Global fit in other bases don’t show big constraints

WE_| o Misled by the basis: The | W

4.6 & 7.5|0.0 & 26.|2.¢ 9 415.6 £13.[—3.9 & 32.

’

C2

TABLE I:. Best yefficients of

dimension 6 operato lon operators are

C2

large range allowed for ¢,
but not for ¢/’




Some groups claim yes:

B.Grinstein, C.WV.Murphy and D.Pirtskhalava |3

Global fit in other bases don’t show big constraints
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TABLE I: Best fit values and 1o errors, in units of TeV =2, of the coefficients of
dimension 6 operators in the HS basis when the coefficient of four-fermion operators are

assumed to vanish.

Some other groups claim an overconstrained set:
T.Corbett: O.J.P. Eboli; . Gonzalez—Fraile; M.C.Gonzalez—Garcia 12

4 operators involving Higgs and gauge bosons
claimed to be unconstrained from fermion physics,
while we have 6!
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Some other groups claim an overconstrained set:
T.Corbett: O.J.P. Eboli; . Gonzalez—Fraile; M.C.Gonzalez—Garcia 12

4 operators involving Higgs and gauge bosons

One operator moved to operators made of fermions and another
thought to be constrained by the S-parameter...

but fermion physics alone cannot constrain these two!




Towards the ultimate SM fit

Put bound on coefficients model-independently
(allowing to vary the others)
\> previous analysis always turning one by one the coefficients

Step by a step process instead of a global fit

Assumptions:

* Lepton & baryon number

* Flavor symmetries (MFV)

* Neglect O3y (can be relaxed without great impact)

Input: &, Mz, Gr



Mainly two types of SM
deformations:

|) Breaking of EW symmetry:

W, L

2) New interactions growing with the energy:

/ /
/ /




Mainly two types of SM
deformations:

|) Breaking of EW symmetry:

f
2 2
W.Z _ suY
A2
f

LEP key-playerl

2) New interactions growing with the energy:

/ f E2
f oA

LHC key-player|

Intensity frontier vs high-energy frontier



|) Lepton-widths of the Z & Mw:

LEPI: F(Z — ZLZL)

P(Z — ZRZR)

NZ = vv)=Ty — s

Tevatron: Mw

\> constrain deformation on Z/W propagators
and Z|| vertices at per-mille



2) Kaon decays (KLOE) + B-decay measurements has
allowed to put a very stringent bound on quark-
lepton universality of the W interactions

| Vas | °F
0.052F

wow | | Vad|? + 1 Vaus? + | Vap|? = 0.9999(6)

q ! |C] rk 1 < 10 3

GF |leptons

0.051F

0.050f K->aly

assuming unitarity

0.049 _ lo contour unitarity

0.948 0.949 0.950 |Vud|2
CI V CI @o V
Deformation involved: x + >‘W<
u e u e
+ LHC bounds on udlv

d X \ \> constrain deformations

u e on the Wud vertex at per-mille



3) Z decay-widths into quarks:

difficult to disentangle the different contributions, but same
combination of coefficients enter in the H decay:

H <H>
X




4) Gauge boson 3-vertices:

LEPI|: ete>WW

\> constrain deformation
on the ZWWV vertex at per-cent

... LHC becoming also competitive



combinations
of the 4

B-decay,
K-physics
& Z-physics

0, = L(0"[H)

Qo = —3(DFWE,)?
Oyp = —+(8"B,,)?
Do = —5(D*GS,,)?

OBB — g’2|H|QB’LWB'LW
Oce = g;|H[*GS, G

0

OgW m— gEabCWSVWBPWCPM
_ av b c
O3G - gSfabCG'u G]/pG PR

O = N H[S
o
physics
only two cw+cee & Mw

Oyu = 13 ‘HPQLHUR

Oyd — yd|H|2QLHdR

Oyl — yl’H|ELH€R
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No bound from EWPT on h— 4y
(only from direct searches)
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... last hope for O(|) deviations!



Predictions on h— Wff,Zff:

Z Z Z Z
h h h h
_____ + + + s
f
ij(f f f {j
7* 7* A* f
f

5 (fOr the Z) + 3 (fOr the W) (per fermion type)
parameters “‘ready”’ to be measured



Imposing bounds at per-mille:

54+3 > 2

Imposing bounds at per-cent:

2—+0

2
m
af ~ afSM (1 + 2ew (1 — tan? Oy ) + kgw (1 + tan? GW)M—g[)
Z
aQZ ~ ()
ag ~ ()

bY ~ — 492 kew (1 + tan® Oy)

bZ ~ 0

cw € | —0.05, 0.08

2
m
a‘fv ~ a‘l/E/SM(lJchW—i—K;HW H)

Mg, kw € | —0.06, 0.04]
N _ _
ay == 0
by =~ _491];;//‘3HW



Going beyond tree-level...



One-loop operator mixing

Interesting situations could arise:

Tree-level One-loop induced
Otree OZOOP

RG evolution

v

Ctree 10 A

Cloop (1M ) ~ 1672 myy

dominant effect from running!!



Jenkins,Grojean,Manohar, Trott |3 (JGMT)
claimed to be the case for h—Yyy:

When the new physics can be characterized by a single scale M, and a coupling g,,
simple physical arguments lead to an interesting power counting for the Wilson coefficients
of our operator basis [13|. For coefficients ¢; = ¢;v?/A?, we find the power counting

Example given:
SILH case —_/ o ews.eps,eow ~ O (5z) (4.6)

2
_ _ = ew = _ _twB 9p_ v*
CGs Cyy = CW + B — Cw; YZ = %an Ow ¢p tan Oy tan 20y, 0 <167r2 Mg) ’ (47>

where the last row follows from the fact that the Higgs boson cannot decay to vy, Z+ and
gg at tree-level in any theory that satisfies the minimal coupling assumption. Note that,
when a discrete symmetry is present, there can be further suppression of the operators
in the first row, as is the case in R parity conserving SUSY scenarios where there is no
tree-level contribution to the S parameter. Also, if the Higgs boson emerges as a pseudo
Nambu-Goldstone boson of the new physics sector, the Higgs decays to vy and gg can only
be obtained from a loop that involves couplings which break the global shift symmetry
of the pseudo Nambu-Goldstone boson. In that case, we obtain a further suppression of

98/ 95 [13], s

2 2 2
- 9sm 9p ¥
CGty Cryy ~ O : 4.8
Gy Cyy ( gg ].67'('2 Mp2> ( )
Here, gsy denotes a combination of the SM couplings ¢1,2,y;. The simple power count-
ing above demonstrates the importance of the RGE mixing between the operators we are
considering:

2
ey (1) ~ ey (A) + 5 1oy (%) a(h), (19)

and parametrically the ratio of the RGE contribution over the new physics contribution to
v scales like (g%,,/ 92) log(A/p) in the general case and is further enhanced to log(A/u)



We found that this is not the case
Another example of: proper basis, simple solution

Elias-Miro,Espinosa,Masso,AP |3

Our basis:

) 0" B, Opp = ¢*|H|*B,, B""

ig o Opw = ig(D“H)Taa(D”H)W;‘V
Ow = 5 (HTU‘LD“H> DWW,
Oup = ig (D"H)(D'H)B

%




We found that this is not the case
Another example of: proper basis, simple solution

Elias-Miro,Espinosa,Masso,AP |3

Our basis:

Opp = ¢”°|H|*B,, B"

)0 B

Z’g VI OHW — ig(DMH)TOG(DVH)WSV
Ow =< (HTUGD“H) DWW,

Oup = ig (D"H)(D'H)B

Uy

JGMT beasis:

Owp = g9'(H'o"H)W, B"

Oww = 92|H|2W,LCLLI/WCLMV

operators are a mixture of “tree-level” and “loop™
operators of our basis



Relation between both:
1 1
Op =0yp + ZOWB + ZOBB 7

1 1
Ow = Opgw + ZOWW =+ ZOWB



only relevant
. ( i)
In our basis: e /\ NO MiIXing:
( BB \ / KBB \

d Kaw 3 T 0500 kKaw
dlog BTy X NHE
Cw Cw
\ s/ \ 5/
calculated by |GMT
In JGMT basis: eeded to be
: , calculated to know
(| s |\ [ op v
, , the full answer!
d Cww oy Cww
dlogp | LWELL ™\ 0y X W
Caw Caw
\ CHB \ up /




An even better basis:

Our basis:

JGMT basis:

Owp = g9'(H'o"H)W, B"

Oww = 92\H|2WSVWGW



d /i?WW
dlog u KAW b
Cw

I'

O2x3

03x2



One-loop operator mixing

InterestiMsituations could arise:

Tree-=leve ced

Otree

One-loop |
Q

YOp

Seems not to
happen in any
SM process!

Ctree 1
O
167‘(‘2 5 ™Tw

Cloop (mW) ™

dominat effect from running!!



Inspiration from QCD: Chiral lagrangian for pions:

Ordinary basis:
f2
Ly = Z<DMUDMU> -
— Ly (F*D,UD,U" + F*D,U'D,U) + Ly, (U F¥UFy,,)
In a2 “SILH basis’’;
€6 ), -‘- AN 11 % A -‘- 1% ‘(I )
tree”: ((U'D,U)D,F! + (UD,U")D,F&") 0op

Cloop - Lg —+ Ll() N 0.9 —95.5
Ciroo Lo —Ligp  6.94+5.5

Smaller by a “loop” ~ I/Nc~ 1/3!

1 1
Not renormalized by loop of pions: Yeop X% +710 = m5 = 575 =0

Experiments say: 0.1




Final answer:

A

hyy: Fiyy (M) = Ky (A) — 755 log —
mp,

3 3
167T2/7WW = 6yt2 — 5(392 + g'z) + 12)\] KBB + [592 — 2)\] (/fHW -+ KJHB) .

dominant if Kyy is one-loop suppressed but not Knw+Krs

e.g. H as PGB:

H—H+c means Ke:=0 but Kiw+KueF0



Conclusions

* Dim-6 operators give a model-independent way
to search for open doors to leave the SM

* Bases separating “tree” & “loop” operators can be
useful for the analysis

* Implications on Higgs decays after an educated fit to the SM:

Almost closed doors: h— Zff, VWif

* At the one-loop order, no operator mixing
from “tree” to “loop” operators



