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A space-time filling coherent oscillating axion
field will cause any magnetic source or field to
become an electric source or field through the
anomalous coupling of the axion to
electromagnetic fields.

The electron will develop an oscillating electric
dipole moment of strength 2g.,,00upon
where alf = 0pcos(mat).



AXions:

The axion is a pPNGB associated with the spontaneous
breaking of Peccei-Quinn symmetry.

Typically the PQ symmetry breaks at a high scale f4
At the QCD scale, instantons activate the U(1) axial
current anomaly.

The axion acquires a potential and forms a VEV which
cancels the QCD CP-violating phase facp

Small oscillations about this minimum are
associated with the axion mass and can constitute dark
matter.



Axions

The axion kinetic terms and potential take the form:
S, = Jd‘h: %(8;&)2 — %(Vﬂ)2 — %mﬁaz

The axion mass is controlled by instanton effects that
lead to mixing with the pseudoscalar nonet of mesons.
The axion mass is then given by:

mif> = cmifz

The prefactor, c,is ¢ = 2~ where z = e = 0.5

[+z

and vanishes as m, ofr my — 0

QCD:  ma = mafelfa ~ 0.6 x 107 x (10'2/f.) GeV.
(0.6 x 1074 x (10'2/£,)) ™ x (0.2 x 1071%) = 3.3 (£,/10'2) cm



Axions

The axion is actually an “angular variable" in the effective
action on scales much less than f,

I't is useful to write axion expressions in terms of the angle
variable O(x,1) = a(x,t)/f,.

The axion kinetic term can be written:

Su = [d*x L(0,000.1))% = L (VO(x.1))* = L12m20° (x.1)



Axions
Assume a cosmic axion field: O(x,1) = Bgcos(mqt)
The axion ener'gy density is:
E, = (8 O(x,1))" + < famz07 (x,1) = Sfam305
Equate this to the galactic halo dark matter density:

—(mfr)?05 = 0.3 GeV/cm?

1 _z
2 (1+)

Hence: 0o ~ 3.6 x 107"  independent of £, (!)



Axionic Electrodynamics

The axion couples to the electromagnetic field via the U(1)
axial current anomaly:

A~ LV

%QHW(?)F?N F, = —gnw(?)f' §

LV

Where: F, = 2€"7F,,; and gayy = anomaly coefficient.
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Sayy = 8.3 x 10 DFSZ 31, 260 (1980) [Yad. Fiz. 31, 497 (1980)].

t

4 J. Kim, Phys. Rev. Lett. 43 (1979) 103; M. A. Shifman,
2 3% 10" KSV/ A L Vainshtein and V. L Zakharov, Nucl. Phys. B166

Sayy (1980)493

See the PDG article.



Axionic Electrodynamics

The action for axion electrodynamics

—2 =2 - =
§ = [d* 5(5 B ) — 0., 00NE - B
Note that g.,,0(HE - B is a total divergence in the limit

that 6(r) — constant,
The axion anomaly can we written in Two ways:

: | r a o
%L HFF(%)F#“PSF}H’FPJ Egﬂ}’}’FH\LPG@,IJ(?)AerAﬁ

Gauge inv. but not chiral. Chiral inv. but not gauge inv.



Axionic Electrodynamics
Example: RF Cavity Detector

>

A

Conducting cylindrical walls

Longitudinal constant applied
magnetic field, B,



Axionic Electrodynamics
Example: RF Cavity Detector

To detect an electromagnetic signature of the
cosmic axion 8(t) = Bpcos(mgt)
we need a large applied background magnetic field, B;}

— —3
Maxwell's equations for “response fields" E, and B,

Maxwell (1) VxB,—¢E, = —ga}:yﬁu(ﬁ'gﬂ) <- anomaly
Maxwell (2) V xE,+8&,B, =

—  —

and V*Br=§’}*fr=0.

The vector potential in Coulomb gauge likewise

—

— —2 — —
satisfies: ¢?A, -V A, = —g4,,Bo(¢:0). where E, = -G,A,.



Axionic Electrodynamics
Example: RF Cavity Detector

The "particular solution™ E = gay}:?(f)ﬁa
The homogenous solution (lowest electric mode):

E = EoJo(pa)ze™ B = EoJi(pw)ie™ §



Axionic Electrodynamics
Example: RF Cavity Detector

The "particular solution™ E = gaw?(f)ga
The homogenous solution (lowest electric mode):
E = EoJo(pw)ze™ B = EoJy(po)ic B

The resulting net solution:

B = kJ\(pma)Bo 22 % E = (kJo(pma) + gay,)BoBZ

Boundary conditions: E(p =R) =0



Axionic Electrodynamics
Example: RF Cavity Detector

The resonant cavity solution:

—

Jilpma)
B = ~guy 2" By (2

— _ Jo(pma) ) o~

Note resonance at: Jo(Rm,) = 0

Damping will arise from cavity wall resistance, etc.,
modifies the peak solution to:

o J a 4 ( é,8 = Jolpmg =
=—£HVF@B“@ (?ﬂ ) E=_g”?’?’(%m_ I)B“‘EQ

F = J(Jo(Rmy))* +clQ?



Axionic Electrodynamics
Example: RF Cavity Detector

A signal can be extracted from the cavity by inserting a small loop of wire that is threaded
by the flux of the response magentic field, or equivalently, encircled by the electric field.

The voltage induced in a typical loop of length L:

V=4¢$E-dl =-[&B-d(ared) ~ Lzl g

Quantitatively, for By = 1 Tesla, g4y, = 107, and L = 10 cm,
By = 3.6 x 107" is cosmological and independent of £, we find that the scale of

the magnetic response field is IBI = Ig,,, & BD( %0 )I ~ Q%ay,Bobo

F My

= 1.3 x 1077Q gauss. Likewise, the induced voltage in the loop is V ~ Qg.,,BoLOy

~ 4.0 x 107 Q volts. A good RF cavity with Q ~ 10° can bring these signals into
a detectable range. The main issue is RF noise.



Axionic Electrodynamics
Example: RF Cavity Detector

An aside:

Q: Is there enough energy in the axion vacuum to fill an RF cavity to
Its maximum energy”’

We can overestimate the cavity energy by assuming that it 1s a volume

of free space with the induced oscillating electric field F, = gﬂﬂ,ﬁgﬂ( )0,
where we assume amplification by a factor of (J. This 1s an overestmate,
because the conducting walls excite the homogeneous solution (to match
conducting boundary conditions at the wall) that tends to short out

—

the axion signal E, (see below).



The galactic halo energy density is pyr = 0.3 GeV/em? =
(0.3)(0.2 x 107%)” {GeV/em® ) (GeV x cm)? = 2.4 x 107#2(GeV)*

- - —2 — 2
The electromagnetic energy density in the cavity iS: peayiey ~ E, ~ ( gﬂ},},BgﬂgQ)

7 -

Here: 6o =~ 3.6 x 107'°, and By ~ 10 Tesla ~ 10°gauss;

_’
| gauss =l esu/cm?= 7.1 x 107 GeV? ,s0 By ~ 7. 1 x 107> GeV?;
the axion anomaly coupling is ga, ~ 107°; We assume Q = 10° (!).

) —y 2 -
Thus, E, ~ (gmﬂneggj ~ (103 % 7. 1 x 10715 x 3.6 x 10719 x 106)?

~ 6.6 % 10_6D(GEV)4. Therefore peavin/ Pear 2. 7 X 107" hence there
is an enormouse free energy of axions in the halo that is being converted
to our cavity signal energy.

Yes |l



A Puzzle
Our solution involves  0(x,t) = 6o cos(mgt)

Suppose we take the limit m,; = 0

Then 6(t) — constant
Does this imply E, = ga},ﬁu@(r) — (constant) ?7?7?

This is inconsistent with the anomaly written
In the non g.i. form: %gﬂﬂcﬂ“’ﬂﬁ@ﬁ(%)AvﬁpAg

277



Resolution

B" Consider and infinite Universe with background
axion and magnetic field (an infinite cavity):

— —»

Maxwell (1) V x B, —&E, = —gay, Bo(6:0)
Maxwell (2) V x Er - '"'-';E”r = ()




Resolution

B" Consider and infinite Universe with background
axion and magnetic field (an infinite cavity):

— —»

Maxwell (1) V x B, —&E, = —gay, Bo(6:0)
Maxwell (2) V x Er - '"'-';E”r = ()

Particular solution:

—

E, = gapBo[ dr 0.0(1) B,

[
-




This “particular solution”  E, = ga,Bo |, dr 0:6(r)

has the property that it vanishesas:  8.8(t) = 0

(The vector potential satisfies Er = gﬂﬂﬁg j;dr" j; dr ¢.0(7))
Theretfore, whenever we write the sloppy form * fr = ga},};ﬁgfi’(r) 7 we

= — — I -~ = N
really intend E, = g4, By Iﬂdr c.0(t) which manifestly goes to zero as m, = 0.



This “particular solution”  E, = ga,Bo |, dr 0:6(r)

has the property that it vanishesas:  8.8(t) = 0

(The vector potential satisfies Er = gﬂwﬁg j;dr" j; dr ¢.0(7))
Theretfore, whenever we write the sloppy form * fr = ga},}f;}@(r) 7 we

= — — I -~ = N
really intend E, = g4, By Iﬂdr c.0(t) which manifestly goes to zero as m, = 0.

Nonetheless, our infinite universe has acquired an
oscillating electric field that is parallel to the fixed
magnetic field and oscillated with the axion field.



To see this more explicitly, let us consider a source term for
the magnetic field added to the free Maxwell action

s=[ax +(E'-F )+ B

1B B

leading to the energy minimum By = and therefore
B —

the action becomes: - [d*x L (E -B

The potential energy density is V =

=



Consider the full action with the anomaly:
—1 =l —r - —
S = [d* %(E _B ) «7 B - gu,0(0)E + B
—2 — —
- [d*x L (E = Bﬂ) — 8uyyB(E « Bo + 0(g2,,0(1)?)

We can write the anomaly in the presence of our magnetic
field as an electric dipole term:

s LB ) -E.7
_}j X 3 0 p“]



Varying the action wrt A (where E = —¢,A ) implies

Hence: 7(t) = ga,0(1) Bo (so B(t) - 0as m, — 0).

Turning on the axion in this universe produces an electric field:

The effect of the axion is to produce a time dependent electric dipole.

The effect of the axion is to produce
a time dependent electric dipole.




Theorem:

The cosmic oscillating axion field will cause any
magnetic dipole moment to become an oscillating
electric dipole moment



Related: Magnetic monopoles acquire electric charge
in presence of a nonzero 6 angle, "Witten Effect.”

DYONS OF CHARGE ¢8/2x

E. WITTEN !
CERN, Geneva, Switzerlgnd

Received 11 August 1979

It is shown that in CP non-conserving theories, the electric charge of an 't Hooft—Polyakov magnetic monopole will not
ordinarily be integral, or even rational in units of the fundamental charge e. If a non-zero vacuum angle 6 is the only mech-
anism for CP violation, the electric charge of the monopole is exactly calculable and is —e6/2n, plus an integer. If there are
additional CP violating interactions, the monopole charge must be computed as a power series in the coupling constant.
These results apply in realistic theories such as SU(S).



Related: Magnetic monopoles acquire electric charge
in presence of a nonzero 6 angle, "Witten Effect.”

DYONS OF CHARGE ¢8/2x

E. WITTEN !
CERN, Geneva, Switzerlgnd

Received 11 August 1979

It is shown that in CP non-conserving theories, the electric charge of an 't Hooft—Polyakov magnetic monopole will not
ordinarily be integral, or even rational in units of the fundamental charge e. If a non-zero vacuum angle 6 is the only mech-
anism for CP violation, the electric charge of the monopole is exactly calculable and is —e6/2n, plus an integer. If there are
additional CP violating interactions, the monopole charge must be computed as a power series in the coupling constant.
These results apply in realistic theories such as SU(S).

A magnetic monopole-antimonopole pair will have a
magnetic dipole; this becomes an electric dipole moment
For nonzero 6 angle. Oscillating axion field implies a
nonzero oscillating 6 angle.



e.g., EDM’'s are a powerful probe:

selectron d =

e A2
{j\m\? em, —LP W P
wino % wino

1/(A)? = (a sin(y) / 4m sin? ©) (1/M

seIectron)2
Current limit: d, < 1028 e-cm
Mselecfron > 10 TeV ( sin(y))l/Z

Future limit: d, < 10%° e-cm -- 1032 e-cm ?

Similar constraints from flavor physics



A simple Feynman Diagram demonstration of induced
electric dipole moment for the elctron:

We begin by writing the axion anomaly in terms of
vector potentials and integrating by parts:

%Qﬂﬂ /d4m €uvpe 0" 8(x) A" ()07 A% (x)

Dirac operator of the magnetic moment of the electron:

1€

[ d'a F@)oapiiz) 045 (a)

21,



Feynman Diagram

K fpta

FIG. 1: Feynman diagram for axion induced electric dipole
moment. Photon g emitted from electron magnetic moment.

Solid dot is the axion anomaly interaction, 0F - B. Dashed
line: incoming axion 6, p. Outgoing photon: p 4+ q. €,. Solid
line: incoming electron k; recoil electron, k'



Feynman Diagram

In momentum space we have:

e

21,

QATTHG PFEH[P + Q':]P‘Euupa X

q

= (977 - ALE) byt

The dipole moments are defined by going to the elec-

tron rest-frame k = (m., ﬁ) The electron i1s very heavy
compared to the axion, and 1s therefore essentially sta-
tionary, and absorbs 3-momentum but not energy (zero
recnil} We assume in the electron rest frame that the
axion field mcnmentum i1s approximately pure timelike,

Pu = (Ma, U} and |?| N Ma << Me, ko = kj, and



Feynman Diagram

Since p* 1s timelike, we have pte,, . = Ma€0u,pr and
we'll pass to DD = 3 latin spatial indices, €y,,0 — €k
Also, T(k')o,,u(k) = epxTorx ( (Tw) 4 (i) are like-
wise spatial in the nonrelativistic limit). The Dirac
four-component spinor 1 has been replaced by the two-
component Pauli spinor, y, with Pauli matrices o*. The
amplitude becomes:

(= 1, . klm

sz gﬁl";r’:.fg'l] My ?thjq Eijk€

X omx

= QATTHD f-ﬂHﬂhTJ{TJix ’ muEi

In Coulomb gauge with vector potential A, the electric

field 1s given by = —0; A = mﬂ?, Our final result
can be written as an effective interaction for the non-
relativistic electron as:

f ' 29 0(t) pBone X —x(2) - E (z,1)



Feynman Diagram

The result is:
~ 1.4 x 107%%(g 4~ /1073) cos(m,t) e-cm.

result 1s two orders of magnitude greater than the typ-
1cal result expected for the nucleon, dy ~ 3.67 x
1073 cos(m,t) e-cm [11], and within four orders of mag-
nitude ot the DC limit on the EDM of the electron,
de < 8.7 x 10729 e-cm, [13].



Axionic Electrodynamic Radiation

Consider a compact local magnetic field configuration §g
for a magnetic dipole in the presence of the cosmic axion

—

Maxwell (1)  V x B, - ,E, = —gﬂ},}ﬁﬂ(&@)
Maxwell (2) VxE,+8,B, =0
and ﬁ’}'ﬁ, =$'Er = ().
—3 —2 — —~
Equivalently: 24, -V A, = —g4,,Bo (8;9)

SOLVE WITH RETARDED GREEN'S FUNCTIONS

G(r,t;r't") = = ]—"| S(t—t —1IX =X 1)
e




Messy:

Axionic Electrodynamics

Radiation

Hanca,
Foixt) = imagapPucxplimat) [ 477 —-:l.p[ ima® - T Ve :-rmn{i"}
Infegrate by pars:
- imep o Bnexp(imat) ¥ « 77 [?_l_rcl.p[ im 7 ?'n]ﬁt;.{?}
Lopks =t like the curl of Herzian dipole E field.
Infegrate, to obtain:
1) = imagarsBoexplimat) ¥ & expl-im?) ) «
= —imega Spenplima) {2 222 ) « W exp(-im 7

[using ¥r = & TLa-L]
Jackson defines: E(ni) = 2% « oins) = L7« Hons) hence:
Fote) = s Srcaptima ¥ x [(Z = 22 <t exp(-im?)]
Computea:
[ BamFuexplima]]

Y [(F-57) ™ ewpl-ime |

[ messy = exp fm,}'l][?-[%-%g‘-’}] = exp| im.,l?]{il‘-i']{%+£
exp| |r|1_-.|.'r']} -r [‘l.‘—ﬂ“-"—.:]-:rﬁ

Voldet Frel Tolossd® Voloi-Z._L
— "— = - —_ - =
-2 (RF)E -7 @y (RF)Z-Eo@T




Axionic Electrodynamic Radiation
Resulting radiation fields: (1) = exp(inqt)

E (x.1) = —gay,0(1) exp(—im,[X1)

. (—J_ﬁ (4rs3(P) ) + (1 + r'mar)(% 32 (”:'r) ) —mﬁ(:

s ' .
B,(x.1) = guyy.0(t) exp(—imalXl) i x { L + )




Axionic Electrodynamic Radiation

Resulting radiation fields: (1) = exp(inqt)

E (x.1) = —gay,0(1) exp(—im,[X1)
. (—:T'F (4rs3 (7)) + (1 +r'mar)(%—3 - ) —mﬁ(‘}l—%ﬁ;

L~
+
E-
ba [
Sl
e

B (x.1) = gay,8:0(1) exp(—img[X1) 1t x (

Near Zone: “Hertzian” Electric Dipole:

— —
ﬂ!'i‘r}
3

Er(x1) = ~gary60) (475’ 7) + (£ -3 7ETLY) )

B/ (x.1) = gaw&f&?(r)( m ox %) ~ 0 (less singular than E, (x,r)




Axionic Electrodynamic Radiation

Resulting radiation fields: (1) = exp(inqt)

E (x.1) = —gay,0(1) exp(—im,[X1)
. (—:T'F (4rs3(P) ) + (1 + r'mar)(% —3- (”:'r) ) —mﬁ(‘}l Ay 4 ))

L~
+
E-
ba [
Sl
e

B (x.1) = gay,8:0(1) exp(—img[X1) 1t x (

Far zone:

E (x.1) = gapym26(t) exp(=ima?) (2 — L EL)

r

B,(x.1) = ~m3ga, 00 exp(-im ) (1 x (L))



Axionic Electrodynamic Radiation
Resulting radiation fields: (1) = exp(inqt)

E (x.1) = —gay,0(1) exp(—im,[X1)

. (_m (4;1.53(?)) +(l +f"f??af)(r£j_3 5' ) _;??E(:

_“ | LS
B,-(I, I) = ga}:yﬁrg(f) EKP(—fF?TaL_T}I) ﬁ x (L} + _Im,;r )

Poynting:




Axionic Electrodynamic Radiation

—2
Power ~ +gz,,ma6052%

r

m ~ Bo x (Volume)
Note that ni has dimensions of g, = 1/m (Bohr magneton)

For ADMX: ni ~ Bo x (Volume)

at 1 Tesla, 10 cm, get = 1. 8 x 10-2 watts






Pauli-Schroedinger Calculation

tpﬂl

- O o S S e o .
—f—
=

FIG. 1: Feynman diagram for axion induced electric dipole
moment; solid dot is axion anomaly interaction, #F- B dashed
line, incoming axion #, p; outgoing photon, p+q, €,; solid line,
incoming electron k, solid line, recoil electron, k'



Pauli-Schroedinger Calculation

Pauli-Schroedinger Action
_‘-a” ——y'G - (IE ~ EE) T - (EE— EE) W — iy o,y
-> magnetic moment
—2iupy B>y = g =2
Compute Feynman diagram:

= T[d4 S €O Ry r:«;A jd" —::r 00e™A 10mA

- Em .[dil I {?[!T{jk{’[f Ei D(I B }’} "5[]6. EH!AH € (k€ jmn



Pauli-Schroedinger Calculation

Pauli-Schroedinger:

USE: Fiijjmn = _'Fji'k'-fjmn = _5i'm§kn + 5in5kni

< [d*y [d*x y'ory 6i D(x - y) 608 GmAn (Simbin — Sinbim)

- - 2m

static electron: g v'ow >0

4 :
D(x—y) = [ T4 exp(iq « (x —y))

J D =y) = [ 355 g exp (77 - (-)eld”) =

1
I(X=F)I

= —igigow [d*x S(X) - E(X.x°) 6(:x")

+igppon [d*y [d*x S(X) - VD(x - y) 68()°) GiEi(y.)°)



Axionic Induced Oscillating EDM

=~ [d*x ylow 6 (Ep)

2m



“Georgi” Calculation

Adapt Heavy Quark Effective FT to the Electron:

1 — =1 ”
v ( ;’5)@:% ﬂ:%@b(%ﬁ):%

The Dirac magnetic moment operator takes the form:

1€

e — — : Fate
mﬂ)ﬂgﬂyﬂ)UF”” — %i’u [F]'(E-Ecrﬁp"rﬂ}fpvﬂr)@bud Aﬁ (15)

2m

where we use:

(7)o (557) -
Y




“Georgi” Calculation

Compute time ordered product:

1€

T 2 [ 805, () (scapr ) ()0 47 (2)
T
1
<3 [ A 0)err0,A.(1)0.A,)
Use: EﬂngE“”“‘S = — (gggf;:’gﬂ + [—l)ppermutations))

Lots of algebra ........



“Georgi” Calculation

Result:

= £ Idﬁ— (m) 55[1r ( 1+v )W (QFHJG)

vifdy[dx 0P (W (45 ) (rPoap) (52 )w() ) Dx —y) - 8,(8F7 (1))

Yields more conventional form of the EDM.
Agrees with Pauli in rest frame, static electron.



Electromagnetic Duality

The result of the previous section is a general low en-
ergy theorem. Consider an arbitrary localized magnetic

dipole interaction in Coulomb gauge V - X =0, Ap =0:

/ﬁﬂ{?}ﬁ:/ﬁﬁ?xﬁ

The effect of the axion anomaly, to first order in pertur-
bation theory as in the previous section, schematically
produces a term,

— Garyn / iz M(T)-V (%{ata(t)}? x Z)
- gm/d% o(t) M - E



This result 1s formally related to duality in electromag-
netic theory. Deser and Teitelboim [17] elegantly formu-
lated the continuous electromagnetic dual tranformation,

whereby E) — —ﬁ This arises from an infinitesimal
non-local transtormation at the level of the vector poten-
tial. In Coulomb gauge the Deser-Teitelboim dual trans-

formation 1s:
¢ )
A = 5V x 04
which implies at the field strength level,

SE ——5B 0B =B

We see that the transformation acting on the magnetic

source term I'pf V; * fﬂ( will produce a dual rotation of
the magnetic field into the electric field, provided we can
replace the dual rotation angle by € — ga~,0(t).

52 = g“”’%g(t) ? X .aj




We might worry that this affects the kinetic term of the
electromagnetic theory (note that the gﬂﬂﬂ[t)ﬁ B term
1s already infinitesimal in this sense and does not trans-
form). However, we can see that the electromagnetic
action, S = [ dq“:r:(ﬁg — gg) /2, is invariant under the
time dependent transformation. Define €(t) = ga0(t)
and consider:

5A iE(:':) (? X {‘;?fj)

?‘2

§E — — (84) % (V aj) _¢B
5B — : X (‘F X E?tﬁ) — E(i)ﬁ

Eﬁ
where we follow DT and use the vector potential equa-
tion of motion, c}fﬁ' = ?EX. We see that §§ has the

same form as that of Deser and Teitelboim. Hence the
magnetic dipole moment will cleanly rotate into an oscil-
lating electric dipole moment.



If we consider the action integral we find:

/%5?9 = — /Eﬁ-ﬁ+fatsﬁ-(?xj)
/%5‘5?2 _ /EE*.‘B?

where we've integrated by parts in space and time and
discarded surface terms. Note that, with some manipu-

lation, fEEz - ﬁ = %faff X-? X X + total divergence.
We thus find for the shift in the action:

2 [(BB)+ o (v<7)

= 0

05

modulo surtace terms.



However, static electric dipole moments will not ac-
quire oscillating magnetic moments. The effect of the

additional nonlocal term in eq.(16) of 5? is nontriv-
1al. Given an electric dipole moment term in the ac-

tion, f d*z ? * ﬁ where ﬁ 1s time mdependent, we find
o f dz ﬁ * B — () upon integrating the nonlocal term 1n
5@ by parts and using 92 X —?EE = 0. The asymmetry

between magnetic and electric dipoles 1n axion electrody-
namics 1s a consequence of the exclusive time dependence

in €(t) (this is modified if Buzion # 0).



It we introduce large classical magnetic background
fields, the physical dual rotation induced by the axion
on these fields generates the solutions to Maxwell's equa-
tions. In an RF cavity experiment with a large apphed

constant magnetic field By = Bpz the Maxwell equa-
tions take the form of eq.(10) and above. The rhs of
eq.(10) is just the time derivative of the dual rotation
of the large applied field By. The particular solution of

1s likewise the infinitesimal dual tranformation of gg,

E\'r — _Q'a"r”‘fgﬂ (ﬂﬁﬂ'



Conclusions

The resulting EDM has been criticized for being
proportional fo 0(¢) = Opcos(m,t) and
nonvanishing as m, -> 0.

The same issue arises in the case of the anomaly.
The result is intrinsically oscillatory (the nonlocal
makes the source for the vector potential
transverse, ie, not Coulombic) . The above
Feynman amplitudes can be written as :

A,(6:6) 6 E,

chiral non q.i. Gauge inv, non-chiral



Conclusions

A space-time filling coherent oscillating axion
field will cause any magnetic source or field to
become an electric source or field through the
anomalous coupling of the axion to
electromagnetic fields.

The electron will develop an oscillating electric
dipole moment of strength 2g.,,001tom s
where alf = 0pcos(mat).

Within a few orders of magnitude of current
elctron EDM limit (ACME). This may be
measureable in experiment. The electron OEDM
is about 103x neutron OEDM



